Electrical Performance of Perovskite (CH3NH3PbX3, X=I, Br, Cl) Solar Cell using Copper Thiocyanate (CuSCN) as Hole Transport Layer
Keywords:
CH3NH3PbI3, CH3NH3PbBr3, Copper thiocyanate (CuSCN), C-V and C-F characteristics, Fill Factor (FF), Perovskite solar cell, Power conversion efficiency (PCE), Open Circuit Voltage (Voc), Short Circuit Current Density (Jsc)Abstract
The comprehensive modelling and numerical simulation of perovskite solar cells were carried out utilizing perovskite materials such “methyl ammonium lead halide (MAPbX3, MA= CH3NH3, X=I, Br, Cl)” with the help of SCAPS tools and measured the measurements like "open-circuit voltage (Voc), fill factor (FF), power conversion efficiency (PCE), and short-circuit current density (Jsc) of the MAPbI3, MAPbBr3 and MAPbCl3 material used as active layer, respectively." “In the envisioned structure of the perovskite solar cell, the copper thiocyanate (CuSCN) molecule plays a crucial role as a hole transmitting Layer (HTL).” The features structure parameters for CH3NH3PbI3 like a fill factor (FF) of 89.56, a power conversion rate (PCE) of 30.83%, an open circuit voltage (Voc) of 1.299V, along with a short circuit current density (Jsc) of 26.50 mAcm-2, for the structural parameters of CH3NH3PbBr3 include a fill factor (FF) of 84.34, power conversion efficiency (PCE) of 11.05%, an open circuit voltage (Voc) of 15.12V, as well as a short circuit current density (Jsc) that is 1.050 mAcm-2 and for CH3NH3PbCl3 like a fill factor (FF) of 83.67, density (Jsc) of 1.055 mAcm-2 according to the findings of the simulation.
References
M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, et al (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation, Renewable and Sustainable Energy Reviews, 41, 284-297, Available at: https://doi.org/10.1016/j.rser.2014.08.046
R Kirana, P Leeva, A Revina Aleksandra, et al (2016). An introduction to solar cell technology, Journal of Applied Engineering Science, 14(4), 481-491, Available at: https://scindeks-clanci.ceon.rs/data/pdf/1451-4117/2016/1451-41171604481R.pdf
T Tiwari (2018), “Next generation Solar Power technology”, [Online] Available at: https://www.electronicsforu.com/technology-trends/must-read/next-gen-solar-power-technology-part-1/2 [Accessed on May 2018].
R Swami (2012). Solar cell, International Journal of Scientific and Research Publications, 2(7), 1-5, Available at: http://www.ijsrp.org/research_paper_jul2012/ijsrp-july-2012-34.pdf
A Mohammad Bagher (2014). Comparison of organic solar cells and inorganic solar cells, International Journal of Renewable and Sustainable Energy, 3(3), 53-58, Available at: http://dx.doi.org/10.11648/j.ijrse.20140303.12
Md Tawheed Kibria, A Ahammed, S Mahmud Sony, et al (2014). A review: Comparative studies on different generation solar cells technology. Proceedings of 5th International Conference on Environmental Aspects of Bangladesh. ICEAB, Available at: https://www.researchgate.net/publication/274195294_A_Review_Comparative_studies_on_different_generation_solar_cells_technology
S Sharma, K Kumar Jain and A Sharma (2015). Solar cells: In research and applications—A review, Materials Sciences and Applications, 6, 1145-1155, Available at: https://www.scirp.org/pdf/MSA_2015122415145298.pdf
C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, et al (2015). Optical properties of Organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells, Journals of Materials Chemistry A, 3(17), 9152-9159, Available at: https://doi.org/10.1039/C4TA05237D
F Giordano, A Abate, J Pablo Correa Baena, et al (2016). Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells, Nature Communications, 7, Available at: https://doi.org/10.1038/ncomms10379
M. J. Taghavi, M. Houshmand, M. H. Zandi and N. E. Gorji (2016). Modeling of optical losses in perovskite solar cells, Superlattices and Microstructures, 97, 424-428, Available at: https://doi.org/10.1016/j.spmi.2016.06.031
R. Yadav, M G.S Tripathi and B. P. Pandey (2019). Effect of ETL layer thickness on perovskite (CH3NH3PbI3) solar cell, Trends in Opto-Electro & Optical Communications, 9(1), 32-37, Available at: https://engineeringjournals.stmjournals.in/index.php/TOEOC/article/view/2513
R. Yadav, M G.S Tripathi and B. P. Pandey (2019). Impact of ETL/absorber interface layer on perovskite (CH3NH3PbX3, X: I, Br, Cl) solar cell, Nano Trends-A Journal of Nano Technology & Its Applications, 21(2), Available at: https://techjournals.stmjournals.in/index.php/NTs/article/view/740
W. S. Yang, J. H. Noh, N. J. Jeon, et al (2015). High-performance photovoltaic perovskite layers fabricated through intra molecular exchange, Science, 348(6240), 1234-1237, Available at: https://doi.org/10.1126/science.aaa9272
Y Miyazawa, M Ikegami, H-Wei Chen, et al (2018). Tolerance of perovskite solar cell to high-energy particle irradiations in space environment, iScience, 2, 148-155, Available at: https://doi.org/10.1016/j.isci.2018.03.020
S Li, Y-Li Cao, W-Hua Li and Z-Shan Bo (2021). A brief review of hole transporting materials commonly used in perovskite solar cells, Rare Metals, 40(10), 2712-2729, Available at: https://doi.org/10.1007/s12598-020-01691-z
N Wu, Y Wu, D Walter, et al (2017). Identifying the cause of voltage and fill factor losses in perovskite solar cells by using luminescence measurements, Energy Technology, 5(10), 1827-1835, Available at: https://doi.org/10.1002/ente.201700374
F Anwar, R Mahbub, S Sarwar Satter and S Mahmud Ullah (2017). Effect of different HTM layers and electrical parameters on ZnO nanorod-based lead-free perovskite solar cell for high-efficiency performance, International Journal of Photoenergy, 2017, Available at: https://doi.org/10.1155/2017/9846310
S Zulqarnain Haider, H Anwar and M Wang (2018). A comprehensive device modeling of Perovskite solar cell with inorganic copper iodide as holetransport material, Semiconductor Science and Technology, 33(3), Available at: https://iopscience.iop.org/article/10.1088/1361-6641/aaa596
K. Masuko, M. Shigematsu, T. Hashiguchi, et al (2016). Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE Journal of Photovoltaic, 4(6), 1433-1435, 2016, Available at: https://doi.org/10.1109/JPHOTOV.2014.2352151
C. Wehrenfennig, G.E. Eperon, M.B. Johnston, et al (2014). High charge carrier mobilities and lifetimes in organolead tri halide perovskite, Advanced Materials, 26(10), 1584-1589, Available at: https://doi.org/10.1002/adma.201305172
C. C. Homes, T. Vogt, S. M. Shapiro, et al (2001). Optical response of high-dielectric-constant perovskite-related oxide, Science, 293(5530), 673-676, Available at: https://doi.org/10.1126/science.1061655
F Sadeghi and M Neghabi (2017). Optimization of structure of solar cells based on lead based perovskite via numerical simulation, Journal of Solar Energy Research, 24, 315- 321, Available at: https://www.researchgate.net/publication/323689753_Optimization_of_Structure_of_Solar_Cells_Based_on_Lead_Perovskites_CH3NH3PbX3_X_I_Br_Via_Numerical_Simulation
J-Yuan Jeng, Y-Fang Chiang, M-Huan Lee, et al (2013). CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Advanced Materials, 25(27), 3727-3732, Available at: https://doi.org/10.1002/adma.201301327
W Mulder (2015). Study of electronic characteristics of heterojunction with intrinsic thin-layer devices and defect density profile of nanocrystalline silicon germanium devices (Master’s Thesis), Iowa State University, Ames, Iowa, 1-81, Available at: https://dr.lib.iastate.edu/server/api/core/bitstreams/f3b9df8f-7c60-4df9-a5a4-7cae68a86987/content